

JX-003-1015003

Seat No.

Third Year B. Sc. (Sem. V) (CBCS) Examination

October - 2019

Mathematics: BSMT - 07 (A)

(Boolean Algebra & Complex Analysis - I) (New Course)

Faculty Code: 003

Subject Code: 1015003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Numbers written to the right indicate full marks of the question.
- 1 (A) Answer the following short answer questions: 4
 - (1) Define: Reflexive Relation.
 - (2) Define: Irreflexive relation.
 - (3) Define: Poset
 - (4) Find the greatest and least elements of the poset $(\{1,2,3,4,5,6\},/)$
 - (B) Answer in Brief: (Any One)

2

- (1) If $(L_1, *, \oplus, 0, 1)$ is a bounded lattice then show that a * 1 = a and $a \oplus 1 = 1$
- (2) Define Complemented lattice and give an example.
- (C) Answer in Detail : (Any One)

3

- (1) Show that (S_{30}, D) is a lattice.
- (2) State and Prove isotonicity property.
- (D) Answer in Brief : (Any \mathbf{One})

5

- (1) Let $(L, *, \oplus)$ be a lattice. For any two elements $a, b \in L, glb\{a, b\} = a * b$ and lub $\{a, b\} = a \oplus b$ with respect to the partial ordering R on L.
- (2) Prove that product of two lattices is also a lattice.

		(1)	Define : Boolean Algebra	
		(2)	State D'morgan's Law for Boolean Algebra.	
		(3)	Define: Atom in Boolean Algebra.	
		(4)	If a and b are two distinct atoms then what is the value of $a * b$?	
	(B)	Ans	wer in Brief : (Any One)	2
		(1)	For $\forall a, b, c \in B$ Prove : (i) $a * (a' \oplus b) = a * b$	
			(ii) $(a*b) \oplus (a*b') = a$	
		(2)	Define: Boolean homomorphism	
	(C)	Answer in Detail : (Any One)		3
		(1)	For a finite Boolean Algebra $(B, *, \otimes, ', 0, 1)$, If x is a nonzero element of B then show that \exists an atom $a \in B$ such that $a \le x$	
		(2)	If $(B, *. \oplus, ', 0, 1)$ is a Boolean Algebra, then for any	
			$x_1, x_2 \in B$ show that $A(x_1 * x_2) = A(x_1) \cap A(x_2)$	
	(D)	Ans	wer in Detail : (Any One)	5
		(1)	If $(B, *, \oplus, ', 0, 1)$ is a finite Boolean Algebra with A as the set of atoms of B then	
			prove that Boolean Algebra is isomorphic to the Boolean Algebra $(P(S), \cap, \cup, \phi, S)$	
		(2)	Prove that sum of all minterms of n-variables $x_1, x_2, x_3, \dots, x_n$ is 1.	
3	(A)	Ans	wer the following short answer questions:	4
		(1)	Evaluate: $\lim_{z \to \infty} \frac{2z+3}{z+i}$	
		(2)	Define: Analytic function	
		(3)	Write Laplace Equation	
		(4)	State C-R condition in polar form	
	(B)	Ans	wer in Brief : (Any One)	2
		(1)	Show that $f(z) = 2x + ixy^2$ is no analytic.	
			Check whether $y^3 - 3x^2y$ is harmonic or not.	
JX-0	03-10	01500	03] 2 [Cont	d

(A) Answer the following short answer questions:

Answer in Detail: (Any One)

- If $w = x^2 + ayx + by^2 + i(x^2 + dxy + z^2)$ is analytic then find the values of a, b, c and d.
- (2)Prove that an analytic function of a constant modulus is also constant in its domain.
- Answer in Detail : (Any One)

5

3

- Obtain Cauchy-Riemann conditions in Cartesian form.
- Prove: $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}, z \neq 0$ (2)z = 0

Satisfied C-R conditions at origin however f(z)is not analytic function at origin.

- (A) Answer the following short answer questions: 4
 - State Cauchy Integral Formula.
 - (2) If c: |z| = 1 then $\int \frac{z}{2z 1} dz =$
 - (3) If c: |z| = 2 then $\int_{c}^{z} \frac{z}{(z-1)(z-3)} dz =$ _____
 - If L is the length of contour c then $L = _$
 - Answer in Brief: (Any One) (B)

 $\mathbf{2}$

4

- (1) Find: $\int_{C} \frac{z}{(9-z^2)(z+i)} dz, |z| = 2$
- State Green's Theorem.
- Answer in Detail: (Any One)

3

- (1) Prove that $\left| \int \frac{dz}{z^2 1} \right| \le \frac{\pi}{3}$ where C is the arc from z=2 to z=2i of circle $\mid z\mid=2$.
- Prove in usual notations: $\int_{a}^{b} f(z) dz \le \int_{a}^{b} |f(z)| dz$

(D) Answer in Detail:

5

If the complex function is analytic everywhere inside and on closed contour C and z_0 is any point lying inside

C then show that
$$\int_{C} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

- 5 (A) Answer the following short answer questions: 4
 - (1) State Fundamental Theorem of Algebra.
 - (2) State: Maximum Modulus Theorem.
 - (3) Define: Jordan Arc.

(4) If
$$C: |z| = 1$$
 then $\int_{C} \frac{e^{2z}}{z^3} dz$

(B) Answer in Brief: (Any One)

2

(1) Evaluate :
$$\int_{C} \frac{z^2 + 3}{z^2(z - 4)} dz$$
, where $C : |z| = 1$

- (2) Evaluate : $\int_{C} \frac{z^2 + 1}{(z 1)^3} dz$, where C : |z| = 1
- (C) Answer in Detail: (Any One)

3

- (1) State and Prove Cauchy inequality.
- (2) State and Prove Liouville's Theorem.
- (D) Answer in Detail: (Any One)

5

(1) State and Prove Morera's Theorem.

(2) Prove :
$$f''(z_0) = \frac{n!}{2\pi i} \int_c \frac{f(z)}{(z-z_0)^{n+1}} dz$$